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Abstract 

Inflection is a vital element to express semantic in synthetic languages. Proper induction is 

crucial for text generation and reporting systems. The induction of inflection rules is an 

open question in computational linguistics. The existing solutions use dictionary, 

transformation rules or statistical observations to inflect a stem. These methods have 

drawbacks either in precision and cost efficiency. This paper present a hybrid method 

which is based on classification and associative memory. The words which belong to non-

frequent categories are stored in the associative memory thus the classification process 

can be performed faster. The transformations for the regular words are determined by the 

classifier. Precision, size and time cost of the algorithm are measured with different sized 

associative memory. The tests were performed on a training set of (stem, inflected form) 

pairs for the accusative case in Hungarian. The precision of the hybrid algorithm can 

exceed the 90 per cent based on the experimental results. 
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1. Introduction 

Natural Language Processing has a growing 

popularity for the last two decades. Text based 

documents such as emails, report, messages or even 

recorded speeches or videos give a significant part of 

the stored data. Text mining applications like 

information retrieval and document search systems 

have evolved in the last twenty years. In spite of the 

promising results and good performance of the 

existing systems they are often limited to the major 

languages. Because the solutions are related to a 

given language, they have to be ported to another 

natural language which is a costly task. The 

conversion requires deep knowledge about the 

language and its grammatical structures, moreover it 

is usually a time consuming task. 

Although most of the researches are focused on 

English or other major language [1], there are 

solutions for languages with only a few million native 

speakers such as Hungarian. The “Szószablya” 

project [2] [3] provides a morphological analyzer for 

Hungarian. The KOPI is a plagiarism [4] [5] checker 

developed by the Hungarian Academy of Sciences. 

These projects are focused on the information 

extraction. 

Text generation is another branch of natural 

language processing which aims to generate natural 

language texts such as reports or questions. For 

Hungarian, László Bednarik created a system to 

generate questions for exam from annotated text [6]. 

Hungarian is an agglutinative language so the 

inflection plays an important role in its grammar. 

Words are created by adding suffixes to the stem and 

the suffix slightly modifies the meaning of the stem. 

There are about 17 different cases in Hungarian [7] 

which makes the language complex. This paper 

focuses on the induction of inflection rules of the 

accusative case of the Hungarian. 

There are dictionary based, rule based and 

statistical methods to learn inflection rules in the 

literature. The dictionary based methods have high 

precision but they are costly and they cannot deal 

with unknown words. The rule based methods have 

difficulties with the exceptions and they have a trade-

off within precision and cost. Although it is easy to 

create statistical methods but they have low precision. 

This paper presents a novel method which uses a 

classifier enhanced with associative memory. The 

presented method can achieve approximately 90 per 

cent precision which is better than the pure 

classification based algorithms. 

The paper is organized as follows. Section 2 
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presents a brief overview of the related works. The 

section presents a brief survey on the different 

morphological analyzers, stemmers and inflection 

algorithms. The proposed hybrid method is detailed 

in Section 3. The experimental results are 

summarized in Section 4. The corresponding training 

set contains approximately 54.000 (stem, inflected 

form) pairs of the accusative case in Hungarian. The 

performed measurements were focused on the 

precision, time cost and size of the classification 

structure. The conclusions are summarized in Section 

5. 

2. Related Works 

Computational Linguistics aims at capturing the 

aspects of the natural languages by rule-based and 

statistical models. Computational linguistics provide 

solution for various tasks such as morphological 

analysis, stemming or inflection. The algorithms of 

computational linguistics are widely used in Natural 

Language Processing solutions. For example 

stemmers and morphological analyzers are used in 

information retrieval systems. Algorithms on 

inflection are used in text generation and machine 

translation applications, too. 

The first systems were focusing on simpler 

morphological problems. For example the inflection 

of the past tense of English was analyzed in [8]. It is 

assumed that there are different modules in human 

mind which are responsible for the inflection. There 

is a rule based process to inflect the regular verbs 

which allow the inflection of even unknown words. 

But its drawback is the over regularization which 

transforms irregular verbs into incorrect form. For 

example children make grammatical errors when they 

say “comed” or “breaked” [9]. The learning of 

irregular verbs is similar to an associative memory. 

On the other hand there can be similarities found 

between irregular verbs which lead to the theory of 

rule-associative-memory. 

Inflection is the inverse function of stemming 

which is well-studied in text mining. Stemming 

algorithms are based on various approaches such as 

dictionary, rules or statistics. Although dictionary 

based methods provides the highest accuracy, they 

cannot generalize nor handle unknown words. 

Moreover the building of the dictionary is costly, 

time-consuming and requires language experts. Rule 

based stemming methods has a trade-off between 

accuracy and cost. The Porter stemmer is one of the 

most popular rule based stemming algorithms [10], 

[11]. Statistical methods requires no language 

experts, but they can have a low accuracy. An 

unsupervised statistical stemming method is 

presented in [12] which transforms the induction task 

into an optimization task. Although it has promising 

results for fusional languages, it was not tested with 

agglutinative languages which have more suffixes 

and more complex inflection rules. 

SMOR is a morphological analyzer [13] for 

German inflection rules based on Finite State 

Transducers. The rules were implemented in Stuttgart 

Finite State Transducer tools and SMOR uses a 

lexicon which only stores the properties of the stems. 

SMOR has rules for prefix, suffixes, derivation, 

composition and inflection. In the experiments the 

precision of the SMOR were above 95 per cent in 

general and the precision depends on the frequency of 

the word. 

Finite State Transducers are widely used for 

morphological analysis and translation. Stochastic 

transducers are also used to learn morphology [14]. 

The AraComLex [15] is a morphological analyzer for 

Modern Standard Arabic. Finite State Transducers are 

used to perform the analysis. Finite State Transducers 

are used also in machine translation systems [16]. 

Bayesian approach was used to perform 

morphological analysis in [17]. It assumes that the 

spelling rules occur at the end of the word. The 

𝑃(𝑐, 𝑡, 𝑓, 𝑦, 𝑟|𝑤) model is used to define the stem for 

the word where 𝑤 is the word, 𝑐 is the class of the 

word, 𝑡 is the stem, 𝑓 is the suffix, 𝑦 is the type of the 

spelling rule and 𝑟 is the transformation. During the 

inference a standard Markov Chain Monte Carlo 

technique was used. Their experiments showed that 

the accuracy of the stem and suffix recognition 

depends on the context. The accuracy of stem 

recognition is about 65 per cent and the accuracy of 

suffix recognition is about 78 per cent. Although this 

method is no as precise as the above mentioned rule 

based algorithms, it does not require human experts 

and a priori knowledge about the grammatical rules 

of the language. 

The endings of the words are considered as 

classes in [18] because the language learners often 

learn induction tables where a cell denotes an 

inflection class. Based on their endings the words are 

organized into candidate inflection classes. These 

classes can be organized into a lattice. The authors 

tested five different reduction algorithms from the 

point of view of precision and recall. The tests were 

evaluated with both English and Spanish languages. 

 

3. Hybrid Method 

The algorithms of Computational Linguistics 

usually have a common model which can be seen in 

Fig. 1. Morphological analyzers, stemmers and 

inflection systems usually have two core parts. There 

is an engine to perform the transformation on the 

input word and to produce the output word. The 

engine has no direct knowledge about the language. 

The morphological rules are stored in a separate rule 

set. The structure of the rule set depends on the 

inflection algorithm. For example Snowball [11] is a 

language to describe stemming rules for Porter 

stemmer [10]. Rules of the SMOR [13] 

morphological analyzer are given by the Stuttgart 

Finite State Tools and the engine is realized as Finite 

State Transducer. Classification based inflection 

algorithms can use the category to encode the 

transformation. 
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Fig. 1 Common Model of 

Inflection Algorithms 

 

The proposed method is based on classification 

system. The input data structure of a classification 

system consists of a set of objects 𝑂, a set of class 

labels 𝐶, and a set of attributes 𝐴. The attributes of 

the objects are defined by the function 𝑎: 𝑂 →  𝑃(𝐴) 

where 𝑃(𝐴) is the power set of the attributes. The 

usually unknown function 𝑐: 𝑂 → 𝐶 maps the objects 

to class labels. Equation 1 shows the formal definition 

of the training set. 

 

𝑇 ⊆ { 𝑎 𝑜 , 𝑐 𝑜  |𝑜 ∈ 𝑂}            (1) 

 

The approximation of 𝑐, classification function 

𝑐𝑙𝑇: 𝑂 → 𝐶 depends on the data in the training set. 

The classification function is defined in Equation 2 

where 𝑃𝑟 stands for the probability. 

 

𝑐𝑙𝑇(𝑜) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶{𝑃𝑟(𝐶|𝑎 𝑜 , 𝑇)}                 (2) 

 

The model of the presented inflection algorithm is 

shown in Fig 2. The implemented rule set consists of 

two parts: an associative memory and a classifier. The 

associative memory is used to store the 

transformation string of the irregular words and the 

classifier is used for the regular ones.  

 

 
Fig. 2 Model of the presented 

Inflection Algorithm 

 

The classification of the stems is a difficult 

problem due to the high number of the linear non 

separable cluster pairs [19]. The test method on linear 

separability is based on Simplex method [20]. The 

number of linear non separable cluster pairs can be 

reduced, if the irregular words are stored in an 

associative memory. Thus the classification problem 

can be simpler and higher precision can be achieved. 

Table 1 shows how the number of the non-

separable cluster pairs and the number of the clusters 

decreas if the small clusters are removed. The first 

column shows the minimum size of the clusters 

which remain in the training set. The second column 

shows the number of the non-separable cluster pairs. 

The third column shows the number of the clusters in 

the reduced training set. The high number of different 

class labels can increase the difficulty of the 

classification. Without the elimination of the small 

clusters there are 158 clusters and 96 non-separable 

cluster pairs in the training set. If the clusters which 

contains less than 100 objects are removed, then the 

number of the non-separable cluster pairs decreases 

approximately to its quart and the number of the 

clusters decreases about its tenth. After the reduction 

of small clusters, the elements of these clusters are 

stored in a separate list. 

 
Table 1: Results of the reduction. 

Min. Cluster 

Size 

Number of non-

separable cluster 

pairs 

Number of 

Clusters 

0 96 158 

5 84 46 

10 76 35 

25 42 23 

50 34 19 

100 23 13 

 

The classifier is used to learn the frequent 

inflection rules. The algorithm of this function 

depends on the chosen classification method. 

Classifiers can perform generalization. The 

generalization may easily fail on exceptions. Thus 

classifier systems usually have lower precision than 

associative memory. Moreover, classifiers have more 

difficult learning algorithm which requires a 

significant additional learning time cost. In some 

cases, the classification process also can have a 

significant time cost. The instance based classifiers, 

such as k-NN classifier [21], determines the 𝑘 most 

similar object to the classified instance from an 

instance database. The distance calculation and the 

search can be costly thus the inflection algorithm can 

be slow. 

The rule set determines the behavior of the 

inflection algorithm so the precision of the algorithm 

depends on the rule set. During the learning process 

the rules set is defined as pairs of stem and inflected 

form. Transformation string can be determined for 
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each word pairs with the Levenshtein distance 

algorithm [22]. The transformation strings are 

considered as categories of stems. Thus the inflection 

rule induction task is converted into a classification 

task where the stems are the investigated objects and 

the transformation strings are the categories. 

The classification algorithms in the literature are 

based on various approaches such as Bayes theorem 

[23], decision trees [24], artificial neural networks 

[25] or support vector machines [26]. Our previous 

experiments [19] showed that approximately 70 per 

cent precision can be achieved with standard 

classification methods in the induction of inflection 

rules of the accusative case in Hungarian.  

The representation form of the words affects the 

efficiency of the classification process, too. The 

words are usually converted into real vectors by 

mapping the letters into real values. This mapping can 

be based on code tables such as ASCII or traditional 

alphabet. These mappings have numerous drawbacks. 

For example the distance of the letters is constant and 

the phonetic features of the letters are not considered. 

A phonetic features based alphabet was presented in 

[27] for Hungarian. The phonetic alphabet based 

encoding was shown superior to the traditional 

alphabet and the ASCII code table based encodings. 

The presented inflection algorithm uses both 

classifier and an associative memory to learn 

inflection rules. Regular words are classified by the 

classifier and the irregular words are stored in the 

associative memory. The size of the associative 

memory is a parameter of the method. The algorithm 

looks for the word in the associative memory. If the 

word is not found, then the transformation string is 

determined by the classifier. 

The learning phase has two main steps. In the first 

step the categories are ordered by their size. Then the 

associative memory is populated with the irregular 

words. If a word is put into the associative memory, 

then it is also removed from the training set. The 

population of the associative memory is based on a 

greedy approach i.e. if the size of the associative 

memory is bigger than the training set, then the 

training set is put into the associative memory. Then 

in the second step, the classifier is built based on the 

rest of the training set. The efficiency, the training 

cost and the precision depends on the chosen 

classification method. 

The presented method is evaluated from the point 

of the view of precision, size and time cost. The 

precision is the ratio of the correctly inflected words 

and the total number of the words. The size of the 

rule set is measured with the length of the serialized 

object. Finally the time cost is measured as the 

required time for learning in milliseconds. The 

method was evaluated with alphabetical and phonetic 

alphabet based letter encodings and Naïve Bayes and 

Multi-Layer Perceptron classifiers and different sizes 

for the associative memory. 

 

4. Experimental Results 

The experimental measurements were 

implemented on a training set of 54,000 pairs (stem, 

inflected word) of the accusative case of Hungarian. 

The inflection algorithm was implemented as a 

module of the META framework in Java. 

Alphabetical and phonetic encodings were used in the 

tests. The Weka data mining and machine learning 

framework was used for classification. Naïve Bayes 

and Multilayer Perceptron classifiers were used to 

learn the inflection rules. In the learning phase, the 

75, 90 and 100 percent of the training set was used to 

train the algorithm. But the entire training set was 

used during the testing. Thus the behavior of the 

algorithm with untrained input can be examined. The 

measurements were done with both fixed and relative 

associative memory sizes. The fix measurements 

were done with small associative memory sizes 

because it was assumed that there are only a few 

irregular words. The relative sizes were set to every 

10 per cent of the size of the training set. 

 

Precision 

The precision is one of the most important 

parameters of the classifiers. It shows the ration of the 

correctly classified sample and the validation set. In 

the measurements there were 54.000 samples in the 

training set and this set was the validation set. The 

training set contains the stem of almost every 

Hungarian nouns. The training set was reduced in 

order to observe the behavior of the algorithm with 

untrained words.  

Fig. 3 and Fig 4 show how the precision changes 

in the function of the size of the associative memory 

with alphabetical and phonetic alphabet based 

encodings with Naïve Bayes classifier. The x axis 

shows the size of the associative memory and the y 

axis shows the precision. If the size of the associative 

memory is zero then the algorithm uses only the 

classifier to determine the transformation strings. In 

this case the precision of the algorithm is equivalent 

with the precision of the classifier. The precision of 

the algorithm increases with the size of the 

associative memory. The precision reaches the top 

around 20.000 which is approximately the 40 per cent 

of the whole training set. The precision has a break 

down when the entire training set fits into the 

associative memory. It can be explained with that in 

this case the algorithm do not use the classifier so that 

it cannot generalize. In these case the precision is the 

ratio of the training set and the validating set. 
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Fig. 3 Precision with Naive Bayes Classifier and 

Alphabetical Encoding 

The precision increases more quickly with the 

reduced training sets in the cases of both encodings. 

Although the precision is peak at the same level with 

both alphabetical and phonetic encodings, the 

precision increases more quickly with phonetic 

encoding. These phenomena can be explained with 

the learning algorithm of the classifier. Because the 

irregular cases are placed in the associative memory, 

the number of the categories is reduced. If a category, 

which is not linear separable from other clusters, is 

put into the associative memory, then the number of 

the linear non separable cluster pairs decreases. 

Hence the usage of the associative memory can 

reduce the number of the linear non separable cluster 

pairs. This reduction could yield the incensement of 

the precision of the inflection algorithm. 

 
Fig. 4 Precision with Naive Bayes Classifier and Phonetic 

Encoding 

Multilayer Perceptron shows better precision than 

Naïve Bayes classifier even without associative 

memory. In this case the precision increases steadily 

and tops around 20.000 similar to the Naïve Bayes 

classifier. Fig. 5 shows how the precision depends on 

the size of the associative memory in the case of the 

Multilayer Perceptron with alphabetical encoding. 

Fig. 6 shows how the precision changes with the size 

of the associative memory in the case of phonetic 

encoding. In this case, regarding the Multilayer 

Perceptron classifier there is no significant difference 

between the two encoding unlike with the Naïve 

Bayes classifier. 

 
Fig. 5 Precision with Multilayer Perceptron Classifier and 

Alphabetical Encoding 

 
Fig. 6 Precision with Multilayer Perceptron Classifier and 

Phonetic Encoding 

Size 

The size of the algorithm is a vital property of the 

algorithm from the point of view of performance. 

Algorithms which use a lot of memory are often slow 

due to the frequent memory swaps. An algorithm with 

small memory cost could require less memory swap 

or even could fit into the memory which makes it 

faster.  

The size of the learning algorithm was measured 

as the size of the serialized object in bytes. The 

serialization was possible with the Java API because 

the Classifier class of Weka implements the 

Serializable interface. Because the Naïve Bayes and 

the Multilayer Perceptron classifiers had similar 

behavior with both encodings, Fig. 7 shows how the 

size of the algorithm depends on the size of the 

associative memory. The measurements showed that 

the size of the classifier has no significant effect on 

the size of the inflecting algorithm. The x axis shows 

the size of the associative memory and the y axis 

shows the size of the serialized object of the 

algorithm in bytes. 
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Fig. 7 Size of the inflection algorithm 

The size of the algorithm decreases quickly until 

approximately 1000 then it starts to increase steadily. 

The size increases linearly because the size of the 

associative memory also increases linearly. So linear 

connection between the size of the algorithm and the 

size of the associative memory can be assumed. Fig. 8 

shows how the size of the algorithm changes between 

0 and 3000. It shows that the size drops until about 

200 then it has a minimum between 500 and 1000. 

Finally it starts to increase. The simplification of the 

classification method can be the reason of this fall. 

Because the least frequent category is put into the 

associative memory first, many of the categories can 

be eliminated from the training set even with a small 

associative memory. This elimination yields a 

simplified classifier which requires less memory. 

 
Fig. 8 Size of the inflection algorithm 

Time Cost 

The time cost of the algorithm is the time which is 

require for training. Although this cost occurs only in 

the learning phase it makes the tuning of the 

algorithm slower. Moreover the learning cost can 

limit the applicability of the algorithm if it is too high. 

For example if the time cost would grow exponential 

with the number of samples then it could be applied 

with only small training sets. 

The measurements showed that the learning cost 

of the algorithm significanty depends on the 

classifier. Fig. 9 shows how the learning cost 

decreases with the increase the size of the associative 

memory. It also shows a short transient phase up to 

3.000. Then it decreases steadyly and there is a fall 

around 20.000.  

 
Fig. 9 Time Cost with Naive Bayes Classifier 

 

Fig. 10 shows the time cost in the case of the 

Multilayer Perceptron classifier. Although the 

training cost of the neural network is much more 

higher than the Bayesian classifier the time cost 

function is similar. The time cost can be reduced with 

the application of a small associatvie memory. Then it 

decreases slowly and it also has a break down around 

20.000. 

 

 
Fig. 10 Time Cost with Multilayer Perceptron Classifier 

 

The measurements showed that the precision of 

the classification based inflection algorithms can be 

increased with the usage of associative memory. But 

above a certain size of associative memory the 

precision will not increase. Moreover if the 

associative memory is too big then the precision of 

the algorithm can decrease.  

Measurements showed that the size of the 

algorithm depends on the size of the associative 

memory. Above a certain size of associative memory 

there is a linear connection between the algorithm and 

the associative memory. The learning cost depends on 

the classification method. However the different 
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classification methods had different learning cost the 

time cost decreased similar with both classifiers 

 

5. Conclusion 

This paper presented a classification method 

enhanced with associative memory for inflection 

algorithm. The method uses associative memory to 

learn the irregular words and the exceptions. The 

classifier is used to capture the regular transformation 

rules. The algorithm looks for the rules first in the 

associative memory. If it does not find the rule, then 

the classifier is used to determine the transformation 

rule. These two phases allows to achieve high 

precision and compact size. 

The experimental measurements were focused on 

the precision, the size of the algorithm and the 

learning cost. Results showed that precision increases 

fast with the size of the associative memory. The 

maximum precision was achieved with an 

approximately 20.000 sized associative memory for a 

training set of 54.000 samples. Phonetic alphabet 

based encoding showed better results with Naïve 

Bayes classifier and the encoding had no significant 

effect on the Multilayer Perceptron classifier. 

Measurements on the size of the algorithm showed 

that the size grows linearly with the size of the 

associative memory and the classifier do not modify 

the size significantly. Experimental results show that 

the learning cost of the algorithm depends on 

classifier. The learning cost decreased similarly with 

both tested classifiers although the order of the cost 

function was different. 

The presented inflection algorithm is capable to 

handle irregular words and to determine the 

transformation string for the regular ones with high 

precision. The algorithm could achieve approximately 

90 per cent precision with incomplete training sets 

which is superior to the pure classification based 

methods. The size of the associative memory is a vital 

parameter of the method. The proper chose of this 

parameter requires tuning or examination of the 

training set. 
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